

F100 for OEM Applications

Benjamin Narin

Senior Robotics Engineer Robotics Automation

Presentation Overview

- Background
- Introduction to Zebra Automation & FetchCore
- Introduction to the Robot Operating System
- F100 OEM APIs
- Demos
- Questions

Background

Introduction To Zebra Automation & FetchCore

Introduction to Zebra Automation

Manufacturing Solutions

Distribution Solutions

Fulfillment Solutions

OEM Solutions

Fetchcore

FetchCore Integration Options

Introduction the Robot Operating System

Introduction To The Robot Operating System (ROS)

- What is ROS?
- ROS 1 vs ROS 2
- ROS Core Concepts
 - Nodes
 - ROS Master
 - Messages and Topics
 - Actions
 - Packages and Stacks

What is ROS?

- The Robot Operating System (ROS) is an open source Framework not an Operating System
- Originally developed at Stanford (2007) to provide a plug and play based robotics framework
- Now maintained by the Open Source Robotics Foundation (since 2013)
- Addressed the issues in robotics at the time
 - Lack of standards
 - Little code reuse
 - Recoding common algorithms
 - Continually reinventing or rewriting device drivers
- Runs on Ubuntu Linux Operating System
- Used by over 125 robots models

ROS1 vs ROS2

- There are two supported versions of ROS
- ROS 2 is newer and is being developed as the replacement for ROS 1
- Both are used quite actively throughout robotics
- We will be discussing ROS 1 for the rest of this presentation

ROS Nodes

- A Node is a process that performs some work or computation
- Nodes communicate with each other by either publishing or subscribing to topics
- An example of a Node could be a driver for a sensor which publishes data
- Other nodes can subscribe to, filter, and act on that data

ROS Master

- ROS starts with the ROS Master
- The ROS Master allows all ROS Nodes to find each other and allows communication between the various nodes to be established

Remote ROS Master

- Multiple Computers can communicate with a single ROS Master
- Allows Nodes run on a second computer to act as if they are on the same computer

ROS Topics and ROS Messages

- Topic: Named stream of messages with a defined type
 - Data from a camera might be on topic /camera_image and be of type Image
- There is a standard set of messages, but custom ones can be defined
- Nodes can publish messages (no limit to the number of published topics)
- Nodes will Subscribe to Topics (no limit to the number of subscribed topics)
- The communication model for a topic is 1-to-N
 - One topic can be subscribed to by many other subscribers at once
- On receiving data from a Topic the node will run a Callback
 - Could save the data
 - Trigger an event
 - Etc.

ROS Action

- A standard Interface for requesting work.
- Server Client Model
- There are three parts of a ROS Action Message
 - Goal
 - Published from the client to the server to do some work.
 - Example: could be requesting the robot drives from it's current location to another
 - Feedback
 - Feedback is published from the server as the action executes and subscribed to by the client
 - Example: could be how far from the requested location the robot is
 - Result
 - Result is published by the server to the client at the end of the action
 - Example: could be if the robot succeeded or failed to get to the goal location

F100 OEM Integration

F100 OEM Integrations

- Hypothetical Hardware Setup
 - Power
 - Network
 - Compute
- Software APIs
 - ROS Data Topics
 - ROS Actions

Hypothetical Hardware Setup

- Power
 - 24V 10A (240W)
- Network
 - Connection provided to robot network.
 - Internet access not provided on the internal network.
- Compute
 - Bring your own compute

Numbe r	Description
1	Top Platform
2	Connector Faceplate
3	Ethernet, USB 2.0 or Blank
4	AUX Power (24v)

Hypothetical Network Setup

- Computer 1 onboard F100 Compute
- Computer 2 OEM computer and integration with onboard robot stack

Software APIs (Non exhaustive list)

- Data Topics
 - Battery Information
 - Current state and charge of the battery
 - Runstop Information
 - State of the Runstop (Safety stop button that will either enable or disable the robot)
- Actions
 - Navigate
 - Tell a robot to navigate to a position
 - Localize
 - Localize a robot in a map
 - Charge Dock
 - Go to a charge dock
 - Undock Charger
 - Undock from a charge dock

Demos!

Questions

Thank You

ZEBRA and the stylized Zebra head are trademarks of Zebra Technologies Corp., registered in many jurisdictions worldwide. All other trademarks are the property of their respective owners. ©2023 Zebra Technologies Corp. and/or its affiliates. All rights reserved.